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Abstract

Background

CELLFOOD™ (CF) is a nutraceutical non-addictive, non-invasive, angledely non-toxig
unique proprietary colloidal-ionic formula. Little is known about iteefffon cancer cells
solid tumors. The aim of this study was to evaluate the efiattGF has on different cang
cell lines and the mechanism by which the nutraceutical works.

Methods

The effect of CF on HFF (normal fibroblasts), Met5A (mesotheljud$TO-211H, NCI-
2452, Ist-Mesl1, MPP89, Ist-Mes2 (mesothelioma), M14 (melanoma), H1650, H1@iff
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cancer), SKRB3 (breast cancer), and HCT-116 (colorectal carelegrowth was tested &

y



cell proliferation and clonogenic assay. Among all of them, MSTO-&nhd HCT-116 were
analyzed for cell cycle by flow cytometry and western blot.

Results

&N

All human cancer lines were suppressed on cell growth upon 1:200 &@fRdre for 24 an
48 hours. Death was not observed in HFF and Met5A cell lines. Céd agalysis showed
an increased sub-G1 with reduction of G1 in MSTO-211 and a ad# eyrest of in G1 i
HCT116. Activation of caspase-3 and cleavage of PARP confirmed an apajeath fo
both cell lines. Increased expression levels of p53, p21, and p27, downoegolat-mya
and Bcl-2, and inhibition of Akt activation were also found in CF-g@d¥ISTO-211 ang
HCT-116 cells.

-

Conclusions

These findings ascertained an interaction between p53, c-myc, p21B@2%, PI3K/Akt
pathway, and CF-induced apoptosis in MSTO-211H and HCT-116 cells, snggsti CH
acts as an important regulator of cell growth in human camtldines. CF could be a usetul
nutraceutical intervention for prevention in colon cancer and mesothelioma.
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Background

CELLFOOD™ (CF) is a unique, proprietary concentrate of 78 ionieerals, 34 enzymes,
17 amino acids, electrolytes, and dissolved oxygen, held in a negatiatyed suspension
utilizing deuterium, the only non-radioactive isotope of hydrogen. CF gessantioxidant
properties which protect erythrocytes, lymphocytes, and biomolecghéesa free radical
attacks, suggesting that it may be an adjuvant intervention in thenpien and treatment of
various physiological and pathological conditions related to oxidatiress [1]. The oral
supplementation of CF for a period of six months significantly imgofideromyalgia
symptoms and health-related quality of life of fiboromyalgidgrdas compared to placebo [2].
CF treatment on leukemia cell lines induces cell death due tocadigoptechanisms and
altering cell metabolism through HiFtland GLUT-1 regulation [3]. However, the anti-
cancer activities and potential anti-cancer mechanisms of thacautical in solid tumors
have not yet been elucidated.

Many physiological processes, including proper tissue development andstasig, require
a balance between apoptosis and cell proliferation. All somdtscpreliferate via a mitotic
process determined by progression through the cell cycle. Apofftosggammed cell death)
occurs in a wide variety of physiological settings, whererale is to remove harmful,
damaged or unwanted cells. Apoptosis and cell proliferation are lingkedelb-cycle
regulators and apoptotic stimuli that affect both processes. Ardaiin regulating
proliferation together with suppression of apoptosis are the mimegalrements for a cell to
become cancerous [4].



In the context of aberrant growth control, many important gersggomnsible for the genesis
of various cancers have been discovered and the pathways thwhigh they act
characterized. Two proteins involved intimately in regulating pelliferation are Akt and
the tumor suppressor p53 (p53). The protein serine/threonine kinase Igktk(@wn as
protein kinase B or PKB) plays an important role in avertingdesdith. A diverse range of
physiological stimuli induce Akt kinase activity, including rgatrophic factors which
promote survival, at least in part, through Akt activation via the phosighatsitide 3-OH
kinase (PI3K) signaling cascade. Moreover, induced Akt actiiyAKT) (due to
overexpression) is sufficient to block apoptosis triggered by maathdstimuli [5]. p53 has
an important protective role against undesired cell proliferationsuah, p53 has been
described as the “guardian of the genome”. The p53 protein is a fpdpscfactor that
normally inhibits cell growth and stimulates cell death in respdosmyriad stressors,
including DNA damage (induced by either UV or chemical agents sischnydrogen
peroxide), oxidative stress, and deregulated oncogene expression [6-10].

p53 activation is characterized by a drastic increase andpid accumulation in stressed
cells [11]. p53 is a master gene regulator controlling diverelarepathways, by either
activating or repressing downstream genes. Among such genes, thas® ithe proto-
oncogene enyc, which is negatively regulated by p53 [12]. Thenye proto-oncogene
encodes the c-myc transcription factor, and was originally idedtibs the cellular
homologue to the viral oncogene rfwc) of the avian myelocytomatosis retrovirus [13,14].
More recently, elevated or deregulated expression of c-myc hasibterted in a wide range
of human cancers, and is often associated with aggressive, poorhemdititeed tumours
[15,16]. One of the key biological functions of c- myc is its abildypromote cell-cycle
progression [17-19] by repressing genes as the cyclin-dependent kinidstoris p21/WAF1
(p21) and p27Kipl (p27), which are involved in cell-cycle arrest [20-22].dBedlion relies
on the activation of cyclins, which bind to cyclin-dependent kinases to endeit-cycle
progression towards mitosis. Following anti-mitogenic signals, p21 andipd7o cyclin-
dependent kinase complexes to inhibit their catalytic activity addce cell-cycle arrest
[23].

Acceleration of tumorigenesis is observed when apoptosis is ssegreg overexpression of
anti-apoptotic proteins such as Bcl2 [24]. When anti-apoptotic Bcl-2lyfammembers are
overexpressed, the ratio of pro- and anti-apoptotic Bcl-2 family membedisturbed and
apoptotic cell death can be prevented. Targeting the anti-apoptdtiz fBmily of proteins
can improve apoptosis [25-27]. Apoptosis induction is arguably the most pitarice
against cancer growth. Evidence suggests that certain chemoprevagéints can trigger
apoptosis in transformed cells vivo andin vitro, which appears to be associated with their
effectiveness in modulating the process of carcinogenesis.

In this study, we analyzed the effect of CF on 12 different loed#ls showing that the

nutraceutical has anti-cancer activity. Among all, colon cafi¢€l-116) and mesothelioma
(MSTO-211H) cell lines were the most sensitive and wereteeléo study the action of CF
on cancer. The nutraceutical treatment induced death by apoptosis, atwegol p53 and

downregulation of c-myc, pAkt, and Bcl-2. Given the central role of theslecular targets

in cell proliferation and death, the potential preventive benefitSFoin human cancers are
self-evident.



Methods

Cell culture

Breast (SKRB3), colorectal (HCT116), lung (H1650, H1975), melanoma (M14),
mesothelioma (MSTO-211H, NCI-2452, Ist-Mes1, MPP89, Ist-Mes2) caedlelines, and
fibroblast (HFF) and mesothelio (MeT5A) cell lines were gragualbnditioned in
DMEM/F12 + Glutamax (Invitrogen Life Technologies, Paisley, Wpplemented with
10% FBS and antibiotics and maintained at 37°C and 5% CO2.

Cell food

CF (liquid) was kindly provided by Eurodream srl (La Spezia, Italy)l stored at room
temperature. CF was diluted in phosphate buffered saline (PBS)eaaitidest using a 0.45
um syringe-filter before use.

Cell growth assays

For cell growth experiments, cells were plated in quintuplcate96-well culture plates
(Nunc, Milan, ltaly) at a density of 3 x 1@ells/well. 24 h later, the medium was replaced
with fresh growth medium containing 1:200, 1:400, 1:800, 1:1600 dilutions of CF. Atd24 a
48 h of treatment, XTT labelling reagent (final concentration 0.5m)gkas added to each
well, and the samples were incubated for an additional 4 h at 37°CXThessay (Cell
proliferation Kit (XTT), Roche Molecular Biochemicals, Indianapoli¥) is based on the
cleavage of the yellow tetrazolium salt XTT to form an oramgymézan dye by metabolic
active cells. Absorbance was measured at 492 nm with a refevaretength at 650 nm and
the absorbance values of treated cells were presented exemtpge of the absorbance
versus non treated cells (CNTRL). All experiments were repeated thre i

The anti-proliferative CF activity was assessed in monolagdr culture conditions by
plating cell lines in a T25 flask. After 24 h, CF bper ml of medium corresponding to a
1:200 dilution) was added for the time indicated in the experimentkirngo¢lse was added
in CNTRL. The expansion of cell culture proliferation was quarmtifiesy manual cell
counting. Experiments were repeated in triplicate and media values weratealc

Clonogenic assay

Five hundred viable cells per well (treated with CF and CNTRarevplated in a 35 mm dish
and allowed to grow in normal medium for 10-14 days and then stained fom3& room
temperature with a 6% glutaraldehyde, 0.5% crystal violet soluBmtures were captured
digitally. All experiments were repeated at a minimum twice for eatthie.

Flow cytometry

For cell cycle analyses, cells were fixed in 70% ethanol amddsat -20°C over night. Fixed
cells were treated with 1 mg/ml RNase A (cat. 12091021, Invitrdgee Technologies,
Paisley, UK) for 1 h at 37°C and DNA was stained with Propidium lo¢Bigma, St. Louis,
MO, USA). Samples were acquired with a Guava EasyCyte 86l¥ ¢lytometer (Merck
Millipore Billerica, Massachusetts, USA). Cell cycle distribution wasm.



Western blot analysis

Briefly, 25-50ug of proteins extracted as described previously from cultuksi[2&] were
separated by SDS-PAGE and transferred onto nitrocellulose meesbrislembranes were
blocked and blotted with relevant antibodies: Bcl-2, p21, p27, p53, c-myc, caspaaata
Cruz Biotechnology, Santa Cruz, CA, USA), p-AKT, AKT, PARP (C8lignaling
Technology, Danvers, MA) andtubulina (Sigma, Saint Louis MO, USA). Goat anti-mouse
or rabbit or goat IgG horseradish peroxidase conjugated secondary astiio8j600) (Bio-
Rad Laboratories; Hercules, CA, USA) were visualized with erdthisbemiluminescence
reagent (ECL, Amersham-Pharmacia, Uppsala, Sweden).

Results

CF induces death in human cancer cell lines

The antiproliferative effect of CF dilutions (1:200, 1:400, 1:800 and 1:1600assssed by
Cell proliferation kit upon 24 and 48 h of treatment was tested omatitfeell lines (Table
1). In all cancer cell lines CF had a dose-response effedcinthe slight reduction in the
proliferative activity at 1:800 dilution increased and became signif at 1:200 dilution. At
this dilution dose, no significant changes in the HFF and Met5Alines were observed
(Figure 1A). HCT-116 and MSTO-211 were the most sensitive to CFoartki$ reason they
have been selected for further studies. By manual count of \athl, ¢he absence of
inhibition of cell growth in HFF and Met5A and the antiproliferataativity in HCT-116 and
MSTO-211 upon CF treatment were confirmed (Figure 1B) although wdifferent
percentages compared to those obtained with the proliferation kitsfAdwugs that CF inhibits
the proliferation of cancer cell lines.

Table 1Cell lines tested with CF

Name Source
H1650 Lung Cancer
H1975 Lung Cancer
HCT-116 Colon Cancer
HFF Fibroblast8
Ist-Mes1 Mesothelioma
Ist-Mes2 Mesothelioma
M14 Melanoma
Met-5A Mesotheliunt
MPP89 Mesothelioma
MSTO-211H Mesothelioma
NCI-H2452 Mesothelioma
SKBR3 Breast Cancer

NormaF and cancer cell lines.

Figure 1 Effects of CF on cancer and normal human cells. (ATells were cultured in the
presence or absence of CF at the 1:200 dilution for 24 and 48 hours. Cell viability was
measured using the XTT assay and expressed as% of inhibition of proliferatos nen
treated cells (CNTRL). Data are expressed as mean + SD of at leashtlependent
experiments. * p < 0.05 vs CNTR(B) HFF, Met5A, HCT-116 and MSTO cells were
treated with CF (pu/ml, corresponding to a 1:200 dilution) or not (CNTRL) for 24 and 48
hours, the graphs represent the vital cells number measured by manual count. Data are
expressed as mean * SD of at least three independent experiments.




CF reduces the clonogenic survival of MSTO-211 andCT-116 cell lines

The effects of CF on HCT-116 and MSTO-211 cancer cells and HFF ah&AInormal
cells in clonogenic assays were evaluated. The clonogenic calladuassay determines the
ability of a cell to proliferate indefinitely, thereby retaugiits reproductive ability to form a
large colony or a clone. This cell is then said to be clonogenicleSiets were plated and
cultured for 10 days with CF 1:200 (Figure 2). Colony formation wasrdilas HCT-116 and
MSTO-211, while HFF and Met-5A colony yields were unaffecteds ®hiows that CF
selectively inhibits the ability of HCT-116 and MSTO-211to grow into a colony.

Figure 2 HFF, Met5A, HCT116 and MSTO colony formation capacity upon CF

treatment. Five hundred viable cells, pretreated for 48 h with CF (1:200) and CNTRL, were
allowed to grow in normal medium for 10-14 days and then stained by crystal violet solution.
The image is representative of three independent experiments.

CF induces apoptosis in HCT-116 and MSTO-211 celhles

In order to confirm whether CF-induced growth inhibition was due to apgeptoB-treated
and untreated HCT-116 and MSTO-211 cells were analyzed by flmmeyry. The G1 peak
was increased in CF-treated HCT-116 cells. The percentage pé#&klin control and CF-
treated HCT-116 cells for 24 and 48 hours was 32.8 = 0.8, 39.0 + 0.19 and 48.6 £ 1.5,
respectively (Figure 3A). The sub-G1 peak, which is indicatoapuiptosis, was raised
following 24 and 48 hours of CF-treated MSTO-211 cells. The percentatigsafub-G1
peak in control and CF-treated MSTO-211 cells for 24 and 48 hours was003,+11.2 +
1.0 and 17.8 = 2.0, respectively (Figure 3B), thereby suggesting apop#dti death.
Caspase-3 is expressed in cells as an inactive precursor from which theéssofotivei mature
caspase-3 are proteolytically generated during apoptosis. In ourregptyiwe used a mouse
monoclonal antibody raised against the full length caspase-3, soedetion of the
expression of caspase-3 indicates apoptosis. Expression of ca3spadezleavage of poly
(ADPribose) polymerase (PARP) (the substrate of caspase-8arly index of apoptosis)
were detected in western blot (Figure 3C, D) in CF-treat€d-#H16 and MSTO-211cells.
These results show that CF induces apoptosis in HCT-116 and MSTO-24.1Ttelse
results show that CF induces apoptosis in HCT-116 and MSTO-211 cells.

Figure 3 Effects of CF on the HCT116 and MSTO cell-cycle progression and apoptosis

Cell cycle analysis after propidium iodide staining was performed by fjftovwetry in

HCT-116 and MSTO cells untreated (CNTRL) or treated with CF (1:200) for 24 and 48 h
(CF24h and CF48h). The percentages of HCT-116 and MSTO cells in the different phases of
cell cycle was reported in graph) and(B), respectively. Data are expressed as mean £ SD

of at least three independent experiments. Western blot of total lysatesandnzd the CF
activates caspase-3 and PARP cleavage in HCTi@)jland MSTQ(D) cells upon CF

treatment (1:200) for 24 and 48 h versus the untreated contrgl f{@ulin was examined as

a loading control. The image represents three independent experiments.

CF induces apoptosis via upregulation of p53, p21nd p27 and
downregulation of c-myc

To clarify the detailed mechanisms underlying CF-induced ag@btosis, we detected the
expression of apoptosis related proteins in CF-treated HCT-116M&¥dD-211cells by



western blot assay for the indicated time (Figure 4). We foundthkatreatment with CF
increased the expression of p-53 and of the cell cycle-regulatotgins p21 and p27 as
compared to CNTRL. p53 controls some genes includimgc. By investigating c-myc, we
found that its expression is downregulated in CF-treated cel®rapared to the control,
suggesting that p53 negatively regulates c-myc. There are rapdhts literature supporting
our findings showing that apoptosis could be induced through downregulatiomyd o3
curcumin treated cancer cells [28-30]. These data indicate that4p®a;, p21 and p27 play
a decisive role in CF-induced apoptosis of HCT-116 and MSTO-211 cells.

Figure 4 Expression of p53, c-myc, p21 and p27 in HCT-116 and MSTO celfSells were
cultured in the absence or presence of CF (1:200) for the indicated time and Whole ce
lysates were analyzed by western blot. Data representing three inéiepexrperiments with
similar results, indicate an upregulation of p53, p21 and p27 and a downregulation of c-myc
in HCT-116 and MSTO cell upon CF treatment vs untreated gelibulin was examined as

a loading control.

CF induces apoptosis through inhibition of the PI3KAkt and Bcl-2 signhaling
pathway

We investigated the effect of CF on PI3K/Akt and Bcl-2 surypathways. To test the status
of Akt activation, the phosphorylation of Akt was measured in HCT-116 anbQvAL1 by
western blot analysis (Figure 5). A high level of basal phosphedylakt (p-Akt) was
observed in both cells, and total Akt levels were found to be almost qH&T-116 and
MSTO-211 cells. Consequently, we examined the protein expression and phiajuimory
level of p-Akt after CF treatment for the indicated time$i@T-116 and MSTO-211 cells.
The levels of p-Akt significantly decreased following treatmerth CF while total Akt
levels did not change (Figure 5). Our experiments on Bcl-2 westeradsay in non-treated
and CF-treated HCT-116 and MSTO-211 cells showed an evident deofdasle? in CF-
treated cells (Figure 5). These data indicate that CF glagcisive role in the survival
pathway inhibition in HCT-116 and MSTO-211 cells.

Figure 5 Effects of CF on the survival pathway in HCT-116 and MSTO cellCells were
cultured in the absence or presence of CF (1:200) for the indicated times andeithole c
lysates were analyzed by western blot. Data representing three inéiepexrperiments with
similar results, indicate a downregulation of Bcl-2 and p-AKT, whereasA#&faldoes not
change in HCT-116 and MSTO treated with CF for 24 and 48 h vs untreateq tdblslin
was examined as a loading control.

Discussion

Cancer chemoprevention using natural or synthetic compounds to prevargpoess the
development of cancer is an area of active investigation. Mampaunds belonging to
diverse chemical classes have been identified as potentrabpheventive agents, including
dietary constituents, nutraceuticals, naturally occurring phytoicladésn and synthetic
compounds. Because of their safety and the fact that they arerneivpd as ‘medicine’,
natural compounds have created high interest for their development raspcaeentive
agents that may find widespread, long-term use in populations at natsial
Chemopreventive agents function by modulating processes associdtedxemiobiotic
biotransformation, with the protection of cellular elements from oxielatamage, or with



the promotion of a more differentiated phenotype in target ¢8lls34]. They induce
apoptosis, inhibit cellular proliferation, affect angiogenesis @it metabolism in various
cancers, all of which are hindrances to tumor growth [35-37].

It is know that cancer cells can not grow in a high oxygen environar&hthat the prime
cause of cancer is the replacement of the normal oxygenatispiby an anaerobic (without
oxygen) cell respiration, focusing the vital importance of oxy@8&h Our body uses oxygen
to metabolize food and to eliminate toxins and waste through oxidatells @hdergo a
variety of biological responses when placed in hypoxic conditions, including switolergye
metabolism from oxidative phosphorylation to glycolysis and activabbnsignaling
pathways that regulate proliferation, angiogenesis and death. Catisdrave adapted these
pathways, allowing tumours to survive and even grow under hypoxic conditr@hsjraour
hypoxia is associated with poor prognosis and resistance to th@&@®]. In most solid
tumours, the resistance to cell death is a consequence ouppeession of apoptosis
(dependent on mitochondrial energy production).

In this context, CELLFOOD™, the “physiological modulator” aimed take available
oxygen “on-demand” with marked antioxidant effects [1,41,42], was imatet for
apoptosis and cancer prevention. CF (also known as Deutrosulfazymea“)uisaceutical
supplement whose constituents, including 78 trace elements and miBdraiszymes, 17
amino acids, electrolytes and deuterium sulphate, are all naturallyingcubstances which
are essential to the body’s biochemical functions. We testeattivity of CF on 12 different
cell lines, 2 normal and 10 cancerous. Our results showed that CFdemhlicproliferation
in a dose-dependent manner in all the cancer cell lines used.hglesoa (MSTO-211) and
colon cancer (HCT-116) were the most sensitive cell lines tautraceutical. Mesothelioma
(MM), which commonly originates from mesothelial cells lining fhleural cavity, is an
aggressive tumour that is difficult to treat [43]. The number of Miepts is predicted to
increase because of the long latency of the disease and histopoaure to asbestos [44].
Colorectal cancer is a major cause of morbidity and morthlityughout the world [45]. CF
suppresses cell growth by apoptosis in MSTO-211 and HCT-116rel lin particular, we
found that CF caused an increase of sub-G1 and a reduction of G3Ti@{211, and a cell
cycle arrest in G1 in HCT116. We speculated that CF-induced pabiferblock was
irreversible due to the significant increase in population withba@l and G1 DNA content
(that are indicative of apoptosis) observed in the treated aslt®mpared to the untreated
ones.

Evidence of apoptosis in MSTO-211 and HCT-116 cells on CF treatweshbbserved in
western blot. CF induces apoptosis by a caspase-dependent pathwayg Ama caspase
family members, caspase-3 is known to be one of the key executairegyeptosis because
caspase-3 activation causes the cleavage or degradation of domnstgatant substrates,
like PARP, which is the hallmark of caspase-dependent apoptosis. Inxperineents,
caspase-3 activation and PARP cleavage were detected ir&@€dtMSTO-211 and HCT-
116. Thus, apoptosis induction by CF was also confirmed by these observations
Nevertheless, to further explain the precise mechanism of CFeddagoptosis in cancer
cells, we examined the expression levels of p53, c-myc, Bcl-2, pikidit. We identified
p53 as the target of CF. p53 is one of the most important tumour suppyesss, and it is
frequently inactivated in various cancers. p53 modulates variousacdilmctions, such as
apoptosis and cell cycle arrest via transcriptional regulatioerdstingly, wild-type p53
expression was detected in 47% of colorectal adenocarcinomas [4@&pmckimately 70—
80% of mesothelioma cells, although having the wild-type p53 gene, ahmwwnologous



deletion at the INK4A/ARF locus containing the pl4ARF and the pl16INKgdAes, which
consequently leads to decreased p53 functions despite the wild-typepgefty MSTO-
211 and HCT-116 cell lines endowed wild-type p53 and CF treatment iedrahe
expression level of p53.

Accumulating evidence indicates that c-myc has an important dunti cell proliferation

and apoptosis induction [48]. c-Myc expression is low in quiescent noellaMhereas it is

elevated in a broad range of human cancers, such as the majgamal mesothelioma,
indicating its key role in tumour development [49]. Human malignant gllenesothelioma
shows elevated c-myc expression and it is a transcription faoeutiating cancer
progression, highly overexpressed in 60% of colorectal cancer, imgdjddat c-myc is a
hallmark of tumorigenesis [50-52]. Studies using conventionalactransgenic mice, in
which the oncogene is constitutively expressed in a given celldypmeans of a tissue-
specific promoter, have supported the view that deregulategt,cas an initial event, is
important for the formation of certain cancers, albeit with a latency [24,53,54]. C-myc
has also been reported to promote cell cycle re-entry and patibie through repression of
p21 and p27 expression [55]. In our experiments, CF induced an upregulation ofigiA7a
thus, the suppression of c-myc expression by the nutraceuticalremaler substantial
therapeutic benefits in colorectal cancer and mesothelioma gatigmbhibiting the driving

activities of c-myc in cell proliferation and cell cycle progression.

The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway glag important role in
survival when cells are exposed to various kinds of apoptotic stiB&bT]. Recent reports
have indicated that the activation of Akt pathway is implicatedanferring resistance to
conventional chemotherapy and multiple chemotherapeutic agents on caltedb8,59].
Akt is hyperactivated in a wide range of human tumours as & oéstdnstitutive activation
of growth receptors, mutation of PI3K, and inactivation or loss dNPphosphatise [60].
One mechanism by which Akt prevents apoptosis is considered to prooerdih
phosphorylation and inactivation of the pro-apoptotic protein and also inductibe ahti-
apoptotic Bcl-2 protein expression [5,61]. The pro-survival Bcl-2 famiéynbers are pivotal
regulators of apoptotic cell death; therefore, they are coesides attractive targets for drug
design [62,63]. Interestingly, we found p-AKT and Bcl-2 downregulation @TH16 and
MSTO-211 upon CF treatment, thus leading us to believe that CF casedefor the
prevention of tumours and can possibly sensitize cancer cells to standard.therapy

Conclusion

Taken together, these findings establish an interaction bep&rc-myc, Bcl-2, p21, p27
and PI3K/Akt pathway and CF-induced apoptosis in MSTO-211 and HCT-116whkith
may improve prevention outcomes for mesothelioma and colon cancer. Giveantrad role
of p53, c-myc, Akt and Bcl2 in cell proliferation and death of many cancers, ¢ogeth the
evidence obtained on MSTO-211 and HCT-116 cell lines treated with €Believe in the
potential chemopreventive benefits of CF in human cancers. Althoughrfumtlestigation is
underway in our laboratory, this present work suggests that CEeassitize cancer cells to
standard therapy. In addition, as a nutritional supplement, CF can inthegeality of life
of cancer patients undergoing antineoplastic therapy.



Abbreviations

CF: Cellfood™; GLUT-1: Glucose transporter 1; Hl&k-Hypoxia inducible factor 1 alpha;
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